Molinari, S. et al. A 100 pc elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic center. Astrophys. J. Lett. 735, 33 (2011).
Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic center. Astrophys. J. 582, 246–256 (2003).
Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi Bubbles’ edges. Astrophys. J. 779, 57 (2013).
Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).
Fox, A. J. et al. Probing the Fermi Bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. 799, L7 (2015).
Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi Bubble. Astrophys. J. 834, 191 (2017).
McClure-Griffiths, N. M. et al. Atomic hydrogen in a Galactic center outflow. Astrophys. J. Lett. 770, 4 (2013); erratum 884, 27 (2019).
Di Teodoro, E. M. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow. Astrophys. J. 855, 33 (2018).
Gravity Collaboration. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 636, L5 (2020).
Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar Galactic wind? Astrophys. J. 724, 1044–1082 (2010).
Miller, M. J. & Bregman, J. N. The interaction of the Fermi Bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).
Lockman, F. J., Di Teodoro, E. M. & McClure-Griffiths, N. M. Observation of acceleration of HI clouds within the Fermi Bubbles. Astrophys. J. 888, 51 (2020).
Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).
Longmore, S. N. et al. Variations in the Galactic star formation rate and density thresholds for star formation. Mon. Not. R. Astron. Soc. 429, 987–1000 (2013).
Bolatto, A. D. et al. Suppression of star formation in the galaxy NGC253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013).
Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Annu. Rev. Astron. Astrophys. 28, 2 (2020).
Scannapieco, E. & Brüggen, M. The launching of cold clouds by Galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).
Thompson, T. A., Fabian, A. C., Quataert, E. & Murray, N. Dynamics of dusty radiation- pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. Mon. Not. R. Astron. Soc. 449, 147–161 (2015).
Mukherjee, D., Bicknell, G. V., Sutherland, R. & Wagner, A. Relativistic jet feedback in high-redshift galaxies – I. Dynamics. Mon. Not. R. Astron. Soc. 461, 967–983 (2016).
Richings, A. J. & Faucher-Giguère, C.-A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 478, 3100–3119 (2018).
Armillotta, L., Krumholz, M. R., Di Teodoro, E. M. & McClure-Griffiths, N. M. The life cycle of the Central Molecular Zone – I. Inflow, star formation, and winds. Mon. Not. R. Astron. Soc. 490, 4401–4418 (2019).
Barnes, A. T. et al. Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 469, 2263–2285 (2017).
Krumholz, M. R., Kruijssen, J. M. D. & Crocker, R. M. A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 466, 1213–1233 (2017).
Armillotta, L., Krumholz, M. R. & Di Teodoro, E. M. The life cycle of the Central Molecular Zone – II. Distribution of atomic and molecular gas tracers. Mon. Not. R. Astron. Soc. 493, 5273–5289 (2020).
Girichidis, P., Naab, T., Hanasz, M. & Walch, S. Cooler and smoother – the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479, 3042–3067 (2018).
Zhang, D., Thompson, T. A., Quataert, E. & Murray, N. Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds. Mon. Not. R. Astron. Soc. 468, 4801–4814 (2017).
McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).
Armillotta, L., Fraternali, F., Werk, J. K., Prochaska, J. X. & Marinacci, F. The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 470, 114–125 (2017).
Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, L111–L115 (2018).
Schneider, E. E., Ostriker, E. C., Robertson, B. E. & Thompson, T. A. The physical nature of starburst-driven Galactic outflows. Astrophys. J. 895, 43 (2020).
Güsten, R. et al. The Atacama Pathfinder EXperiment (APEX) – a new submillimeter facility for southern skies. Astron. Astrophys. 454, L13–L16 (2006).
Klein, B. et al. High-resolution wide-band fast Fourier transform spectrometers. Astron. Astrophys. 542, L3 (2012).
Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library https://ift.tt/34elxxJ (2013).
Whiting, M. T. DUCHAMP: a 3D source finder for spectral-line data. Mon. Not. R. Astron. Soc. 421, 3242–3256 (2012).
Roberts, M. S. Radio observations of neutral hydrogen in galaxies. In Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) 309–358 (Univ. of Chicago Press, 1975).
Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M. Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).
Krumholz, M. R. DESPOTIC – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. Mon. Not. R. Astron. Soc. 437, 1662–1680 (2014).
Gong, M., Ostriker, E. C. & Wolfire, M. G. A simple and accurate network for hydrogen and carbon chemistry in the interstellar medium. Astrophys. J. 843, 38 (2017); erratum 866, 163 (2018).
Draine, B. T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. Ser. 36, 595–619 (1978).
Indriolo, N. & McCall, B. J. Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H3 +. Astrophys. J. 745, 91 (2012).
Oka, T. et al. The central 300 pc of the Galaxy probed by infrared spectra of H3 + and CO. I. Predominance of warm and diffuse gas and high H2 ionization rate. Astrophys. J. 883, 54 (2019).
Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).
"gas" - Google News
August 19, 2020 at 10:03PM
https://ift.tt/349FN3A
Cold gas in the Milky Way's nuclear wind - Nature.com
"gas" - Google News
https://ift.tt/2LxAFvS
https://ift.tt/3fcD5NP
Bagikan Berita Ini
0 Response to "Cold gas in the Milky Way's nuclear wind - Nature.com"
Post a Comment