Search

Cold gas in the Milky Way's nuclear wind - Nature.com

kodikod.blogspot.com
  • 1.

    Molinari, S. et al. A 100 pc elliptical and twisted ring of cold and dense molecular clouds revealed by Herschel around the Galactic center. Astrophys. J. Lett. 735, 33 (2011).

    ADS  Article  Google Scholar 

  • 2.

    Bland-Hawthorn, J. & Cohen, M. The large-scale bipolar wind in the Galactic center. Astrophys. J. 582, 246–256 (2003).

    ADS  Article  Google Scholar 

  • 3.

    Kataoka, J. et al. Suzaku observations of the diffuse X-ray emission across the Fermi Bubbles’ edges. Astrophys. J. 779, 57 (2013).

    ADS  Article  Google Scholar 

  • 4.

    Ponti, G. et al. An X-ray chimney extending hundreds of parsecs above and below the Galactic Centre. Nature 567, 347–350 (2019).

    ADS  CAS  Article  Google Scholar 

  • 5.

    Fox, A. J. et al. Probing the Fermi Bubbles in ultraviolet absorption: a spectroscopic signature of the Milky Way’s biconical nuclear outflow. Astrophys. J. 799, L7 (2015).

    ADS  CAS  Article  Google Scholar 

  • 6.

    Bordoloi, R. et al. Mapping the nuclear outflow of the Milky Way: studying the kinematics and spatial extent of the northern Fermi Bubble. Astrophys. J. 834, 191 (2017).

    ADS  Article  Google Scholar 

  • 7.

    McClure-Griffiths, N. M. et al. Atomic hydrogen in a Galactic center outflow. Astrophys. J. Lett. 770, 4 (2013); erratum 884, 27 (2019).

    ADS  Article  Google Scholar 

  • 8.

    Di Teodoro, E. M. et al. Blowing in the Milky Way wind: neutral hydrogen clouds tracing the Galactic nuclear outflow. Astrophys. J. 855, 33 (2018).

    ADS  Article  Google Scholar 

  • 9.

    Gravity Collaboration. Detection of the Schwarzschild precession in the orbit of the star S2 near the Galactic centre massive black hole. Astron. Astrophys. 636, L5 (2020).

    ADS  Article  Google Scholar 

  • 10.

    Su, M., Slatyer, T. R. & Finkbeiner, D. P. Giant gamma-ray bubbles from Fermi-LAT: active galactic nucleus activity or bipolar Galactic wind? Astrophys. J. 724, 1044–1082 (2010).

    ADS  Article  Google Scholar 

  • 11.

    Miller, M. J. & Bregman, J. N. The interaction of the Fermi Bubbles with the Milky Way’s hot gas halo. Astrophys. J. 829, 9 (2016).

    ADS  Article  Google Scholar 

  • 12.

    Lockman, F. J., Di Teodoro, E. M. & McClure-Griffiths, N. M. Observation of acceleration of HI clouds within the Fermi Bubbles. Astrophys. J. 888, 51 (2020).

    ADS  CAS  Article  Google Scholar 

  • 13.

    Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    ADS  CAS  Article  Google Scholar 

  • 14.

    Longmore, S. N. et al. Variations in the Galactic star formation rate and density thresholds for star formation. Mon. Not. R. Astron. Soc. 429, 987–1000 (2013).

    ADS  Article  Google Scholar 

  • 15.

    Bolatto, A. D. et al. Suppression of star formation in the galaxy NGC253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013).

    ADS  CAS  Article  Google Scholar 

  • 16.

    Veilleux, S., Maiolino, R., Bolatto, A. D. & Aalto, S. Cool outflows in galaxies and their implications. Annu. Rev. Astron. Astrophys. 28, 2 (2020).

    Article  Google Scholar 

  • 17.

    Scannapieco, E. & Brüggen, M. The launching of cold clouds by Galaxy outflows. I. Hydrodynamic interactions with radiative cooling. Astrophys. J. 805, 158 (2015).

    ADS  Article  Google Scholar 

  • 18.

    Thompson, T. A., Fabian, A. C., Quataert, E. & Murray, N. Dynamics of dusty radiation- pressure-driven shells and clouds: fast outflows from galaxies, star clusters, massive stars, and AGN. Mon. Not. R. Astron. Soc. 449, 147–161 (2015).

    ADS  Article  Google Scholar 

  • 19.

    Mukherjee, D., Bicknell, G. V., Sutherland, R. & Wagner, A. Relativistic jet feedback in high-redshift galaxies – I. Dynamics. Mon. Not. R. Astron. Soc. 461, 967–983 (2016).

    ADS  Article  Google Scholar 

  • 20.

    Richings, A. J. & Faucher-Giguère, C.-A. Radiative cooling of swept-up gas in AGN-driven galactic winds and its implications for molecular outflows. Mon. Not. R. Astron. Soc. 478, 3100–3119 (2018).

    ADS  CAS  Article  Google Scholar 

  • 21.

    Armillotta, L., Krumholz, M. R., Di Teodoro, E. M. & McClure-Griffiths, N. M. The life cycle of the Central Molecular Zone – I. Inflow, star formation, and winds. Mon. Not. R. Astron. Soc. 490, 4401–4418 (2019).

    ADS  Article  Google Scholar 

  • 22.

    Barnes, A. T. et al. Star formation rates and efficiencies in the Galactic Centre. Mon. Not. R. Astron. Soc. 469, 2263–2285 (2017).

    ADS  CAS  Article  Google Scholar 

  • 23.

    Krumholz, M. R., Kruijssen, J. M. D. & Crocker, R. M. A dynamical model for gas flows, star formation and nuclear winds in galactic centres. Mon. Not. R. Astron. Soc. 466, 1213–1233 (2017).

    ADS  CAS  Article  Google Scholar 

  • 24.

    Armillotta, L., Krumholz, M. R. & Di Teodoro, E. M. The life cycle of the Central Molecular Zone – II. Distribution of atomic and molecular gas tracers. Mon. Not. R. Astron. Soc. 493, 5273–5289 (2020).

    ADS  Article  Google Scholar 

  • 25.

    Girichidis, P., Naab, T., Hanasz, M. & Walch, S. Cooler and smoother – the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479, 3042–3067 (2018).

    ADS  CAS  Article  Google Scholar 

  • 26.

    Zhang, D., Thompson, T. A., Quataert, E. & Murray, N. Entrainment in trouble: cool cloud acceleration and destruction in hot supernova-driven galactic winds. Mon. Not. R. Astron. Soc. 468, 4801–4814 (2017).

    ADS  CAS  Article  Google Scholar 

  • 27.

    McCourt, M., O’Leary, R. M., Madigan, A.-M. & Quataert, E. Magnetized gas clouds can survive acceleration by a hot wind. Mon. Not. R. Astron. Soc. 449, 2–7 (2015).

    ADS  Article  Google Scholar 

  • 28.

    Armillotta, L., Fraternali, F., Werk, J. K., Prochaska, J. X. & Marinacci, F. The survival of gas clouds in the circumgalactic medium of Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 470, 114–125 (2017).

    ADS  CAS  Article  Google Scholar 

  • 29.

    Gronke, M. & Oh, S. P. The growth and entrainment of cold gas in a hot wind. Mon. Not. R. Astron. Soc. 480, L111–L115 (2018).

    ADS  CAS  Article  Google Scholar 

  • 30.

    Schneider, E. E., Ostriker, E. C., Robertson, B. E. & Thompson, T. A. The physical nature of starburst-driven Galactic outflows. Astrophys. J. 895, 43 (2020).

    ADS  Article  Google Scholar 

  • 31.

    Güsten, R. et al. The Atacama Pathfinder EXperiment (APEX) – a new submillimeter facility for southern skies. Astron. Astrophys. 454, L13–L16 (2006).

    ADS  Article  Google Scholar 

  • 32.

    Klein, B. et al. High-resolution wide-band fast Fourier transform spectrometers. Astron. Astrophys. 542, L3 (2012).

    ADS  Article  Google Scholar 

  • 33.

    Gildas Team. GILDAS: Grenoble Image and Line Data Analysis Software. Astrophysics Source Code Library https://ift.tt/34elxxJ (2013).

  • 34.

    Whiting, M. T. DUCHAMP: a 3D source finder for spectral-line data. Mon. Not. R. Astron. Soc. 421, 3242–3256 (2012).

    ADS  CAS  Article  Google Scholar 

  • 35.

    Roberts, M. S. Radio observations of neutral hydrogen in galaxies. In Galaxies and the Universe (eds Sandage, A., Sandage, M. & Kristian, J.) 309–358 (Univ. of Chicago Press, 1975).

  • 36.

    Heyer, M., Krawczyk, C., Duval, J. & Jackson, J. M. Re-examining Larson’s scaling relationships in galactic molecular clouds. Astrophys. J. 699, 1092–1103 (2009).

    ADS  CAS  Article  Google Scholar 

  • 37.

    Krumholz, M. R. DESPOTIC – a new software library to Derive the Energetics and SPectra of Optically Thick Interstellar Clouds. Mon. Not. R. Astron. Soc. 437, 1662–1680 (2014).

    ADS  Article  Google Scholar 

  • 38.

    Gong, M., Ostriker, E. C. & Wolfire, M. G. A simple and accurate network for hydrogen and carbon chemistry in the interstellar medium. Astrophys. J. 843, 38 (2017); erratum 866, 163 (2018).

    ADS  Article  Google Scholar 

  • 39.

    Draine, B. T. Photoelectric heating of interstellar gas. Astrophys. J. Suppl. Ser. 36, 595–619 (1978).

    ADS  CAS  Article  Google Scholar 

  • 40.

    Indriolo, N. & McCall, B. J. Investigating the cosmic-ray ionization rate in the galactic diffuse interstellar medium through observations of H3 +. Astrophys. J. 745, 91 (2012).

    ADS  Article  Google Scholar 

  • 41.

    Oka, T. et al. The central 300 pc of the Galaxy probed by infrared spectra of H3 + and CO. I. Predominance of warm and diffuse gas and high H2 ionization rate. Astrophys. J. 883, 54 (2019).

    ADS  CAS  Article  Google Scholar 

  • 42.

    Bland-Hawthorn, J. & Gerhard, O. The Galaxy in context: structural, kinematic, and integrated properties. Annu. Rev. Astron. Astrophys. 54, 529–596 (2016).

    ADS  CAS  Article  Google Scholar 

  • Let's block ads! (Why?)



    "gas" - Google News
    August 19, 2020 at 10:03PM
    https://ift.tt/349FN3A

    Cold gas in the Milky Way's nuclear wind - Nature.com
    "gas" - Google News
    https://ift.tt/2LxAFvS
    https://ift.tt/3fcD5NP

    Bagikan Berita Ini

    0 Response to "Cold gas in the Milky Way's nuclear wind - Nature.com"

    Post a Comment

    Powered by Blogger.